![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > soeq1 | Unicode version |
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
soeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poeq1 4808 | . . 3 | |
2 | breq 4454 | . . . . 5 | |
3 | biidd 237 | . . . . 5 | |
4 | breq 4454 | . . . . 5 | |
5 | 2, 3, 4 | 3orbi123d 1298 | . . . 4 |
6 | 5 | 2ralbidv 2901 | . . 3 |
7 | 1, 6 | anbi12d 710 | . 2 |
8 | df-so 4806 | . 2 | |
9 | df-so 4806 | . 2 | |
10 | 7, 8, 9 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 \/ w3o 972 = wceq 1395
A. wral 2807 class class class wbr 4452
Po wpo 4803 Or wor 4804 |
This theorem is referenced by: weeq1 4872 ltsopi 9287 cnso 13980 opsrtoslem2 18149 soeq12d 30983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-ex 1613 df-cleq 2449 df-clel 2452 df-ral 2812 df-br 4453 df-po 4805 df-so 4806 |
Copyright terms: Public domain | W3C validator |