![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > soex | Unicode version |
Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
soex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . 3 | |
2 | 0ex 4582 | . . 3 | |
3 | 1, 2 | syl6eqel 2553 | . 2 |
4 | n0 3794 | . . 3 | |
5 | snex 4693 | . . . . . . . . 9 | |
6 | dmexg 6731 | . . . . . . . . . 10 | |
7 | rnexg 6732 | . . . . . . . . . 10 | |
8 | unexg 6601 | . . . . . . . . . 10 | |
9 | 6, 7, 8 | syl2anc 661 | . . . . . . . . 9 |
10 | unexg 6601 | . . . . . . . . 9 | |
11 | 5, 9, 10 | sylancr 663 | . . . . . . . 8 |
12 | 11 | ad2antlr 726 | . . . . . . 7 |
13 | sossfld 5459 | . . . . . . . . 9 | |
14 | 13 | adantlr 714 | . . . . . . . 8 |
15 | ssundif 3911 | . . . . . . . 8 | |
16 | 14, 15 | sylibr 212 | . . . . . . 7 |
17 | 12, 16 | ssexd 4599 | . . . . . 6 |
18 | 17 | ex 434 | . . . . 5 |
19 | 18 | exlimdv 1724 | . . . 4 |
20 | 19 | imp 429 | . . 3 |
21 | 4, 20 | sylan2b 475 | . 2 |
22 | 3, 21 | pm2.61dane 2775 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
=/= wne 2652 cvv 3109
\ cdif 3472 u. cun 3473 C_ wss 3475
c0 3784 { csn 4029 Or wor 4804
dom cdm 5004 ran crn 5005 |
This theorem is referenced by: ween 8437 zorn2lem1 8897 zorn2lem4 8900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-po 4805 df-so 4806 df-cnv 5012 df-dm 5014 df-rn 5015 |
Copyright terms: Public domain | W3C validator |