MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somo Unicode version

Theorem somo 4839
Description: A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
somo
Distinct variable groups:   , ,   , ,

Proof of Theorem somo
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 breq1 4455 . . . . . . . . . . 11
21notbid 294 . . . . . . . . . 10
32rspcv 3206 . . . . . . . . 9
4 breq1 4455 . . . . . . . . . . 11
54notbid 294 . . . . . . . . . 10
65rspcv 3206 . . . . . . . . 9
73, 6im2anan9 835 . . . . . . . 8
87ancomsd 454 . . . . . . 7
98imp 429 . . . . . 6
10 ioran 490 . . . . . . 7
11 solin 4828 . . . . . . . . 9
12 df-3or 974 . . . . . . . . . 10
13 or32 527 . . . . . . . . . 10
1412, 13bitri 249 . . . . . . . . 9
1511, 14sylib 196 . . . . . . . 8
1615ord 377 . . . . . . 7
1710, 16syl5bir 218 . . . . . 6
189, 17syl5 32 . . . . 5
1918exp4b 607 . . . 4
2019pm2.43d 48 . . 3
2120ralrimivv 2877 . 2
22 breq2 4456 . . . . 5
2322notbid 294 . . . 4
2423ralbidv 2896 . . 3
2524rmo4 3292 . 2
2621, 25sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  \/wo 368  /\wa 369  \/w3o 972  e.wcel 1818  A.wral 2807  E*wrmo 2810   class class class wbr 4452  Orwor 4804
This theorem is referenced by:  wereu  4880  wereu2  4881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rmo 2815  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-so 4806
  Copyright terms: Public domain W3C validator