![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > somo | Unicode version |
Description: A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
somo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4455 | . . . . . . . . . . 11 | |
2 | 1 | notbid 294 | . . . . . . . . . 10 |
3 | 2 | rspcv 3206 | . . . . . . . . 9 |
4 | breq1 4455 | . . . . . . . . . . 11 | |
5 | 4 | notbid 294 | . . . . . . . . . 10 |
6 | 5 | rspcv 3206 | . . . . . . . . 9 |
7 | 3, 6 | im2anan9 835 | . . . . . . . 8 |
8 | 7 | ancomsd 454 | . . . . . . 7 |
9 | 8 | imp 429 | . . . . . 6 |
10 | ioran 490 | . . . . . . 7 | |
11 | solin 4828 | . . . . . . . . 9 | |
12 | df-3or 974 | . . . . . . . . . 10 | |
13 | or32 527 | . . . . . . . . . 10 | |
14 | 12, 13 | bitri 249 | . . . . . . . . 9 |
15 | 11, 14 | sylib 196 | . . . . . . . 8 |
16 | 15 | ord 377 | . . . . . . 7 |
17 | 10, 16 | syl5bir 218 | . . . . . 6 |
18 | 9, 17 | syl5 32 | . . . . 5 |
19 | 18 | exp4b 607 | . . . 4 |
20 | 19 | pm2.43d 48 | . . 3 |
21 | 20 | ralrimivv 2877 | . 2 |
22 | breq2 4456 | . . . . 5 | |
23 | 22 | notbid 294 | . . . 4 |
24 | 23 | ralbidv 2896 | . . 3 |
25 | 24 | rmo4 3292 | . 2 |
26 | 21, 25 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 \/ w3o 972
e. wcel 1818 A. wral 2807 E* wrmo 2810
class class class wbr 4452 Or wor 4804 |
This theorem is referenced by: wereu 4880 wereu2 4881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rmo 2815 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-so 4806 |
Copyright terms: Public domain | W3C validator |