![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sorpssint | Unicode version |
Description: In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
sorpssint |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 4301 | . . . . . 6 | |
2 | 1 | 3ad2ant2 1018 | . . . . 5 |
3 | sorpssi 6586 | . . . . . . . . . 10 | |
4 | 3 | anassrs 648 | . . . . . . . . 9 |
5 | ax-1 6 | . . . . . . . . . 10 | |
6 | sspss 3602 | . . . . . . . . . . 11 | |
7 | orel1 382 | . . . . . . . . . . . 12 | |
8 | eqimss2 3556 | . . . . . . . . . . . 12 | |
9 | 7, 8 | syl6com 35 | . . . . . . . . . . 11 |
10 | 6, 9 | sylbi 195 | . . . . . . . . . 10 |
11 | 5, 10 | jaoi 379 | . . . . . . . . 9 |
12 | 4, 11 | syl 16 | . . . . . . . 8 |
13 | 12 | ralimdva 2865 | . . . . . . 7 |
14 | 13 | 3impia 1193 | . . . . . 6 |
15 | ssint 4302 | . . . . . 6 | |
16 | 14, 15 | sylibr 212 | . . . . 5 |
17 | 2, 16 | eqssd 3520 | . . . 4 |
18 | simp2 997 | . . . 4 | |
19 | 17, 18 | eqeltrd 2545 | . . 3 |
20 | 19 | rexlimdv3a 2951 | . 2 |
21 | intss1 4301 | . . . . 5 | |
22 | ssnpss 3606 | . . . . 5 | |
23 | 21, 22 | syl 16 | . . . 4 |
24 | 23 | rgen 2817 | . . 3 |
25 | psseq2 3591 | . . . . . 6 | |
26 | 25 | notbid 294 | . . . . 5 |
27 | 26 | ralbidv 2896 | . . . 4 |
28 | 27 | rspcev 3210 | . . 3 |
29 | 24, 28 | mpan2 671 | . 2 |
30 | 20, 29 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 C_ wss 3475
C. wpss 3476 |^| cint 4286 Or wor 4804
crpss 6579 |
This theorem is referenced by: fin2i2 8719 isfin2-2 8720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-int 4287 df-br 4453 df-opab 4511 df-so 4806 df-xp 5010 df-rel 5011 df-rpss 6580 |
Copyright terms: Public domain | W3C validator |