![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sp | Unicode version |
Description: Specialization. A
universally quantified wff implies the wff without a
quantifier Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme
C5' in [Megill] p. 448 (p. 16 of the
preprint).
For the axiom of specialization presented in many logic textbooks, see theorem stdpc4 2094. This theorem shows that our obsolete axiom ax-c5 2214 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 1854. It is thought the best we can do using only Tarski's axioms is spw 1807. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
Ref | Expression |
---|---|
sp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1647 | . 2 | |
2 | 19.8a 1857 | . . 3 | |
3 | 2 | con1i 129 | . 2 |
4 | 1, 3 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
A. wal 1393 E. wex 1612 |
This theorem is referenced by: axc4 1860 axc7 1861 spi 1864 sps 1865 2sp 1866 spsd 1867 19.21bi 1869 nfr 1873 19.3 1888 ax16gb 1942 19.12 1950 nfald 1951 ax13 2047 hbae 2055 ax12b 2086 sb2 2093 dfsb2 2114 sbequi 2116 nfsb4t 2130 sb56 2172 exsb 2212 axc5 2224 mo3 2323 mopick 2356 2eu1OLD 2377 axi4 2426 axi5r 2427 nfcr 2610 rsp 2823 ceqex 3230 abidnf 3268 mob2 3279 sbcnestgf 3839 mpteq12f 4528 axrep2 4565 axnulALT 4579 dtru 4643 eusv1 4646 alxfr 4665 iota1 5570 dffv2 5946 fiint 7817 isf32lem9 8762 nd3 8985 axrepnd 8990 axpowndlem2 8994 axpowndlem2OLD 8995 axpowndlem3 8996 axacndlem4 9009 fiinopn 19410 ex-natded9.26-2 25141 relexpindlem 29062 frmin 29322 wl-aleq 29988 wl-equsal1i 29996 wl-sb8t 30000 wl-lem-exsb 30015 wl-lem-moexsb 30017 wl-mo2t 30020 wl-mo3t 30021 wl-sb8eut 30022 wl-ax11-lem2 30026 nfbii2 30567 prtlem14 30615 setindtr 30966 pm11.57 31295 pm11.59 31297 axc5c4c711toc7 31311 axc5c4c711to11 31312 axc11next 31313 iotain 31324 eubi 31343 rexsb 32173 ssralv2 33301 19.41rg 33323 hbexg 33329 ax6e2ndeq 33332 ssralv2VD 33666 19.41rgVD 33702 hbimpgVD 33704 hbexgVD 33706 ax6e2eqVD 33707 ax6e2ndeqVD 33709 vk15.4jVD 33714 ax6e2ndeqALT 33731 bnj1294 33876 bnj570 33963 bnj953 33997 bnj1204 34068 bnj1388 34089 bj-hbxfrbi 34216 bj-spst 34242 bj-19.21bit 34243 bj-19.3t 34252 bj-ax16gb 34325 bj-sb2v 34333 bj-sb56 34349 bj-axrep2 34375 bj-dtru 34383 bj-hbaeb2 34391 bj-hbnaeb 34393 bj-nfcsym 34460 bj-ax9 34464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 |
Copyright terms: Public domain | W3C validator |