![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > spc2egv | Unicode version |
Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
spc2egv.1 |
Ref | Expression |
---|---|
spc2egv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 3120 | . . . 4 | |
2 | elisset 3120 | . . . 4 | |
3 | 1, 2 | anim12i 566 | . . 3 |
4 | eeanv 1988 | . . 3 | |
5 | 3, 4 | sylibr 212 | . 2 |
6 | spc2egv.1 | . . . 4 | |
7 | 6 | biimprcd 225 | . . 3 |
8 | 7 | 2eximdv 1712 | . 2 |
9 | 5, 8 | syl5com 30 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 |
This theorem is referenced by: spc2gv 3197 spc2ev 3202 addsrpr 9473 mulsrpr 9474 0pthonv 24583 1pthon2v 24595 2pthon3v 24606 usg2wlk 24617 usg2wlkon 24618 dvnprodlem1 31743 tpres 32554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |