Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2ev Unicode version

Theorem spc2ev 3202
 Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypotheses
Ref Expression
spc2ev.1
spc2ev.2
spc2ev.3
Assertion
Ref Expression
spc2ev
Distinct variable groups:   ,,   ,,   ,,

Proof of Theorem spc2ev
StepHypRef Expression
1 spc2ev.1 . 2
2 spc2ev.2 . 2
3 spc2ev.3 . . 3
43spc2egv 3196 . 2
51, 2, 4mp2an 672 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818   cvv 3109 This theorem is referenced by:  relop  5158  endisj  7624  dcomex  8848  axcnre  9562  constr3cyclpe  24663  3v3e3cycl2  24664  qqhval2  27963  itg2addnclem3  30068  wlkc  32350 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
 Copyright terms: Public domain W3C validator