![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > spcdv | Unicode version |
Description: Rule of specialization, using implicit substitution. Analogous to rspcdv 3213. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | |
spcdv.2 |
Ref | Expression |
---|---|
spcdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.1 | . 2 | |
2 | spcdv.2 | . . 3 | |
3 | 2 | biimpd 207 | . 2 |
4 | 1, 3 | spcimdv 3191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 |
This theorem is referenced by: mrissmrcd 15037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |