![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > spcgf | Unicode version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
spcgf.1 | |
spcgf.2 | |
spcgf.3 |
Ref | Expression |
---|---|
spcgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcgf.2 | . . 3 | |
2 | spcgf.1 | . . 3 | |
3 | 1, 2 | spcgft 3186 | . 2 |
4 | spcgf.3 | . 2 | |
5 | 3, 4 | mpg 1620 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 F/ wnf 1616
e. wcel 1818 F/_ wnfc 2605 |
This theorem is referenced by: spcegf 3190 spcgv 3194 rspc 3204 elabgt 3243 eusvnf 4647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |