![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > spcgv | Unicode version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcgv.1 |
Ref | Expression |
---|---|
spcgv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . 2 | |
2 | nfv 1707 | . 2 | |
3 | spcgv.1 | . 2 | |
4 | 1, 2, 3 | spcgf 3189 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 e. wcel 1818 |
This theorem is referenced by: spcv 3200 mob2 3279 intss1 4301 dfiin2g 4363 alxfr 4665 fri 4846 isofrlem 6236 tfisi 6693 limomss 6705 nnlim 6713 f1oweALT 6784 pssnn 7758 findcard3 7783 ttukeylem1 8910 rami 14533 ramcl 14547 islbs3 17801 mplsubglem 18093 mpllsslem 18094 mplsubglemOLD 18095 mpllsslemOLD 18096 uniopn 19406 0eusgraiff0rgra 24939 chlimi 26152 relexpind 29063 dfon2lem3 29217 dfon2lem8 29222 neificl 30246 ismrcd1 30630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |