![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > spcimdv | Unicode version |
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | |
spcimdv.2 |
Ref | Expression |
---|---|
spcimdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.2 | . . . 4 | |
2 | 1 | ex 434 | . . 3 |
3 | 2 | alrimiv 1719 | . 2 |
4 | spcimdv.1 | . 2 | |
5 | nfv 1707 | . . 3 | |
6 | nfcv 2619 | . . 3 | |
7 | 5, 6 | spcimgft 3185 | . 2 |
8 | 3, 4, 7 | sylc 60 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 = wceq 1395 e. wcel 1818 |
This theorem is referenced by: spcdv 3192 spcimedv 3193 rspcimdv 3211 mrieqv2d 15036 mreexexlemd 15041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |