Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimgft Unicode version

Theorem spcimgft 3185
 Description: A closed version of spcimgf 3187. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1
spcimgft.2
Assertion
Ref Expression
spcimgft

Proof of Theorem spcimgft
StepHypRef Expression
1 elex 3118 . 2
2 spcimgft.2 . . . . 5
32issetf 3114 . . . 4
4 exim 1654 . . . 4
53, 4syl5bi 217 . . 3
6 spcimgft.1 . . . 4
7619.36 1964 . . 3
85, 7syl6ib 226 . 2
91, 8syl5 32 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  A.wal 1393  =wceq 1395  E.wex 1612  F/wnf 1616  e.wcel 1818  F/_wnfc 2605   cvv 3109 This theorem is referenced by:  spcgft  3186  spcimgf  3187  spcimdv  3191 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111
 Copyright terms: Public domain W3C validator