![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > spim | Unicode version |
Description: Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 2006 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) |
Ref | Expression |
---|---|
spim.1 | |
spim.2 |
Ref | Expression |
---|---|
spim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spim.1 | . 2 | |
2 | ax6e 2002 | . . 3 | |
3 | spim.2 | . . 3 | |
4 | 2, 3 | eximii 1658 | . 2 |
5 | 1, 4 | 19.36i 1965 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
F/ wnf 1616 |
This theorem is referenced by: spimv 2009 chvar 2013 cbv3 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |