MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimw Unicode version

Theorem spimw 1783
Description: Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 7-Aug-2017.)
Hypotheses
Ref Expression
spimw.1
spimw.2
Assertion
Ref Expression
spimw
Distinct variable group:   ,

Proof of Theorem spimw
StepHypRef Expression
1 ax6v 1748 . 2
2 spimw.1 . . 3
3 spimw.2 . . 3
42, 3spimfw 1737 . 2
51, 4ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393
This theorem is referenced by:  spimvw  1784  spnfw  1785  cbvaliw  1788  spfw  1806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-6 1747
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator