![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > splval | Unicode version |
Description: Value of the substring replacement operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
splval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-splice 12547 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | simprl 756 | . . . . 5 | |
4 | fveq2 5871 | . . . . . . . . 9 | |
5 | 4 | fveq2d 5875 | . . . . . . . 8 |
6 | 5 | adantl 466 | . . . . . . 7 |
7 | ot1stg 6814 | . . . . . . . 8 | |
8 | 7 | adantl 466 | . . . . . . 7 |
9 | 6, 8 | sylan9eqr 2520 | . . . . . 6 |
10 | 9 | opeq2d 4224 | . . . . 5 |
11 | 3, 10 | oveq12d 6314 | . . . 4 |
12 | fveq2 5871 | . . . . . 6 | |
13 | 12 | adantl 466 | . . . . 5 |
14 | ot3rdg 6816 | . . . . . . 7 | |
15 | 14 | 3ad2ant3 1019 | . . . . . 6 |
16 | 15 | adantl 466 | . . . . 5 |
17 | 13, 16 | sylan9eqr 2520 | . . . 4 |
18 | 11, 17 | oveq12d 6314 | . . 3 |
19 | 4 | fveq2d 5875 | . . . . . . 7 |
20 | 19 | adantl 466 | . . . . . 6 |
21 | ot2ndg 6815 | . . . . . . 7 | |
22 | 21 | adantl 466 | . . . . . 6 |
23 | 20, 22 | sylan9eqr 2520 | . . . . 5 |
24 | 3 | fveq2d 5875 | . . . . 5 |
25 | 23, 24 | opeq12d 4225 | . . . 4 |
26 | 3, 25 | oveq12d 6314 | . . 3 |
27 | 18, 26 | oveq12d 6314 | . 2 |
28 | elex 3118 | . . 3 | |
29 | 28 | adantr 465 | . 2 |
30 | otex 4717 | . . 3 | |
31 | 30 | a1i 11 | . 2 |
32 | ovex 6324 | . . 3 | |
33 | 32 | a1i 11 | . 2 |
34 | 2, 27, 29, 31, 33 | ovmpt2d 6430 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
cvv 3109
<. cop 4035 <. cotp 4037 ` cfv 5593
(class class class)co 6296 e. cmpt2 6298 c1st 6798
c2nd 6799
0 cc0 9513 chash 12405 cconcat 12536 csubstr 12538 csplice 12539 |
This theorem is referenced by: splid 12729 spllen 12730 splfv1 12731 splfv2a 12732 splval2 12733 gsumspl 16012 efgredleme 16761 efgredlemc 16763 efgcpbllemb 16773 frgpuplem 16790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-ot 4038 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-splice 12547 |
Copyright terms: Public domain | W3C validator |