![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > splval2 | Unicode version |
Description: Value of a splice, assuming the input word has already been decomposed into its pieces. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
splval2.a | |
splval2.b | |
splval2.c | |
splval2.r | |
splval2.s | |
splval2.f | |
splval2.t |
Ref | Expression |
---|---|
splval2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | splval2.s | . . . 4 | |
2 | splval2.a | . . . . . 6 | |
3 | splval2.b | . . . . . 6 | |
4 | ccatcl 12593 | . . . . . 6 | |
5 | 2, 3, 4 | syl2anc 661 | . . . . 5 |
6 | splval2.c | . . . . 5 | |
7 | ccatcl 12593 | . . . . 5 | |
8 | 5, 6, 7 | syl2anc 661 | . . . 4 |
9 | 1, 8 | eqeltrd 2545 | . . 3 |
10 | splval2.f | . . . 4 | |
11 | lencl 12562 | . . . . 5 | |
12 | 2, 11 | syl 16 | . . . 4 |
13 | 10, 12 | eqeltrd 2545 | . . 3 |
14 | splval2.t | . . . 4 | |
15 | lencl 12562 | . . . . . 6 | |
16 | 3, 15 | syl 16 | . . . . 5 |
17 | 13, 16 | nn0addcld 10881 | . . . 4 |
18 | 14, 17 | eqeltrd 2545 | . . 3 |
19 | splval2.r | . . 3 | |
20 | splval 12727 | . . 3 | |
21 | 9, 13, 18, 19, 20 | syl13anc 1230 | . 2 |
22 | nn0uz 11144 | . . . . . . . . . 10 | |
23 | 13, 22 | syl6eleq 2555 | . . . . . . . . 9 |
24 | eluzfz1 11722 | . . . . . . . . 9 | |
25 | 23, 24 | syl 16 | . . . . . . . 8 |
26 | 13 | nn0zd 10992 | . . . . . . . . . . . 12 |
27 | uzid 11124 | . . . . . . . . . . . 12 | |
28 | 26, 27 | syl 16 | . . . . . . . . . . 11 |
29 | uzaddcl 11166 | . . . . . . . . . . 11 | |
30 | 28, 16, 29 | syl2anc 661 | . . . . . . . . . 10 |
31 | 14, 30 | eqeltrd 2545 | . . . . . . . . 9 |
32 | elfzuzb 11711 | . . . . . . . . 9 | |
33 | 23, 31, 32 | sylanbrc 664 | . . . . . . . 8 |
34 | 18, 22 | syl6eleq 2555 | . . . . . . . . 9 |
35 | ccatlen 12594 | . . . . . . . . . . . 12 | |
36 | 5, 6, 35 | syl2anc 661 | . . . . . . . . . . 11 |
37 | 1 | fveq2d 5875 | . . . . . . . . . . 11 |
38 | 10 | oveq1d 6311 | . . . . . . . . . . . . 13 |
39 | ccatlen 12594 | . . . . . . . . . . . . . 14 | |
40 | 2, 3, 39 | syl2anc 661 | . . . . . . . . . . . . 13 |
41 | 38, 14, 40 | 3eqtr4d 2508 | . . . . . . . . . . . 12 |
42 | 41 | oveq1d 6311 | . . . . . . . . . . 11 |
43 | 36, 37, 42 | 3eqtr4d 2508 | . . . . . . . . . 10 |
44 | 18 | nn0zd 10992 | . . . . . . . . . . . 12 |
45 | uzid 11124 | . . . . . . . . . . . 12 | |
46 | 44, 45 | syl 16 | . . . . . . . . . . 11 |
47 | lencl 12562 | . . . . . . . . . . . 12 | |
48 | 6, 47 | syl 16 | . . . . . . . . . . 11 |
49 | uzaddcl 11166 | . . . . . . . . . . 11 | |
50 | 46, 48, 49 | syl2anc 661 | . . . . . . . . . 10 |
51 | 43, 50 | eqeltrd 2545 | . . . . . . . . 9 |
52 | elfzuzb 11711 | . . . . . . . . 9 | |
53 | 34, 51, 52 | sylanbrc 664 | . . . . . . . 8 |
54 | ccatswrd 12681 | . . . . . . . 8 | |
55 | 9, 25, 33, 53, 54 | syl13anc 1230 | . . . . . . 7 |
56 | eluzfz1 11722 | . . . . . . . . . . . 12 | |
57 | 34, 56 | syl 16 | . . . . . . . . . . 11 |
58 | lencl 12562 | . . . . . . . . . . . . . 14 | |
59 | 9, 58 | syl 16 | . . . . . . . . . . . . 13 |
60 | 59, 22 | syl6eleq 2555 | . . . . . . . . . . . 12 |
61 | eluzfz2 11723 | . . . . . . . . . . . 12 | |
62 | 60, 61 | syl 16 | . . . . . . . . . . 11 |
63 | ccatswrd 12681 | . . . . . . . . . . 11 | |
64 | 9, 57, 53, 62, 63 | syl13anc 1230 | . . . . . . . . . 10 |
65 | swrdid 12652 | . . . . . . . . . . 11 | |
66 | 9, 65 | syl 16 | . . . . . . . . . 10 |
67 | 64, 66, 1 | 3eqtrd 2502 | . . . . . . . . 9 |
68 | swrdcl 12646 | . . . . . . . . . . 11 | |
69 | 9, 68 | syl 16 | . . . . . . . . . 10 |
70 | swrdcl 12646 | . . . . . . . . . . 11 | |
71 | 9, 70 | syl 16 | . . . . . . . . . 10 |
72 | swrd0len 12649 | . . . . . . . . . . . 12 | |
73 | 9, 53, 72 | syl2anc 661 | . . . . . . . . . . 11 |
74 | 73, 41 | eqtrd 2498 | . . . . . . . . . 10 |
75 | ccatopth 12695 | . . . . . . . . . 10 | |
76 | 69, 71, 5, 6, 74, 75 | syl221anc 1239 | . . . . . . . . 9 |
77 | 67, 76 | mpbid 210 | . . . . . . . 8 |
78 | 77 | simpld 459 | . . . . . . 7 |
79 | 55, 78 | eqtrd 2498 | . . . . . 6 |
80 | swrdcl 12646 | . . . . . . . 8 | |
81 | 9, 80 | syl 16 | . . . . . . 7 |
82 | swrdcl 12646 | . . . . . . . 8 | |
83 | 9, 82 | syl 16 | . . . . . . 7 |
84 | uztrn 11126 | . . . . . . . . . . 11 | |
85 | 51, 31, 84 | syl2anc 661 | . . . . . . . . . 10 |
86 | elfzuzb 11711 | . . . . . . . . . 10 | |
87 | 23, 85, 86 | sylanbrc 664 | . . . . . . . . 9 |
88 | swrd0len 12649 | . . . . . . . . 9 | |
89 | 9, 87, 88 | syl2anc 661 | . . . . . . . 8 |
90 | 89, 10 | eqtrd 2498 | . . . . . . 7 |
91 | ccatopth 12695 | . . . . . . 7 | |
92 | 81, 83, 2, 3, 90, 91 | syl221anc 1239 | . . . . . 6 |
93 | 79, 92 | mpbid 210 | . . . . 5 |
94 | 93 | simpld 459 | . . . 4 |
95 | 94 | oveq1d 6311 | . . 3 |
96 | 77 | simprd 463 | . . 3 |
97 | 95, 96 | oveq12d 6314 | . 2 |
98 | 21, 97 | eqtrd 2498 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
<. cop 4035 <. cotp 4037 ` cfv 5593
(class class class)co 6296 0 cc0 9513
caddc 9516 cn0 10820
cz 10889 cuz 11110
cfz 11701 chash 12405 Word cword 12534 cconcat 12536 csubstr 12538 csplice 12539 |
This theorem is referenced by: efginvrel2 16745 efgredleme 16761 efgcpbllemb 16773 frgpnabllem1 16877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-ot 4038 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 df-hash 12406 df-word 12542 df-concat 12544 df-substr 12546 df-splice 12547 |
Copyright terms: Public domain | W3C validator |