MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sps-o Unicode version

Theorem sps-o 2238
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sps-o.1
Assertion
Ref Expression
sps-o

Proof of Theorem sps-o
StepHypRef Expression
1 ax-c5 2214 . 2
2 sps-o.1 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393
This theorem is referenced by:  axc5c711toc7  2250  axc11n-16  2268  ax12eq  2271  ax12el  2272  ax12inda  2278  ax12v2-o  2279  axc11-o  2281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-c5 2214
  Copyright terms: Public domain W3C validator