![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > spsbcd | Unicode version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2094 and rspsbc 3417. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
spsbcd.1 | |
spsbcd.2 |
Ref | Expression |
---|---|
spsbcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbcd.1 | . 2 | |
2 | spsbcd.2 | . 2 | |
3 | spsbc 3340 | . 2 | |
4 | 1, 2, 3 | sylc 60 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
e. wcel 1818 [. wsbc 3327 |
This theorem is referenced by: ovmpt2dxf 6428 ex-natded9.26 25140 spsbcdi 30523 ovmpt2rdxf 32928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |