MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbe Unicode version

Theorem spsbe 1743
Description: A specialization theorem. (Contributed by NM, 29-Jun-1993.) (Proof shortened by Wolf Lammen, 3-May-2018.)
Assertion
Ref Expression
spsbe

Proof of Theorem spsbe
StepHypRef Expression
1 sb1 1742 . 2
2 exsimpr 1678 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  E.wex 1612  [wsb 1739
This theorem is referenced by:  sbft  2120  2mo  2373  2moOLD  2374  wl-lem-moexsb  30017  spsbce-2  31286  sb5ALT  33295  sb5ALTVD  33713  bj-sbftv  34345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-sb 1740
  Copyright terms: Public domain W3C validator