MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbim Unicode version

Theorem spsbim 2135
Description: Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
spsbim

Proof of Theorem spsbim
StepHypRef Expression
1 stdpc4 2094 . 2
2 sbi1 2133 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  [wsb 1739
This theorem is referenced by:  mo3  2323  wl-mo3t  30021  pm11.59  31297  sbiota1  31341  bj-hbsb3t  34272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator