MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsd Unicode version

Theorem spsd 1867
Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.)
Hypothesis
Ref Expression
spsd.1
Assertion
Ref Expression
spsd

Proof of Theorem spsd
StepHypRef Expression
1 sp 1859 . 2
2 spsd.1 . 2
31, 2syl5 32 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393
This theorem is referenced by:  axc11nlem  1938  axc11nlemOLD  2048  equveli  2088  nfsb4t  2130  mo2v  2289  mo2vOLD  2290  mo2vOLDOLD  2291  moexex  2363  2eu6  2383  zorn2lem4  8900  zorn2lem5  8901  axpowndlem3  8996  axpowndlem3OLD  8997  axacndlem5  9010  wl-equsal1i  29996  axc5c4c711  31308  bj-axc11nlemv  34315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator