![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > squeeze0 | Unicode version |
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
Ref | Expression |
---|---|
squeeze0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 9617 | . . . 4 | |
2 | leloe 9692 | . . . 4 | |
3 | 1, 2 | mpan 670 | . . 3 |
4 | breq2 4456 | . . . . . . 7 | |
5 | breq2 4456 | . . . . . . 7 | |
6 | 4, 5 | imbi12d 320 | . . . . . 6 |
7 | 6 | rspcv 3206 | . . . . 5 |
8 | ltnr 9700 | . . . . . . . . 9 | |
9 | 8 | pm2.21d 106 | . . . . . . . 8 |
10 | 9 | com12 31 | . . . . . . 7 |
11 | 10 | imim2i 14 | . . . . . 6 |
12 | 11 | com13 80 | . . . . 5 |
13 | 7, 12 | syl5d 67 | . . . 4 |
14 | ax-1 6 | . . . . . 6 | |
15 | 14 | eqcoms 2469 | . . . . 5 |
16 | 15 | a1i 11 | . . . 4 |
17 | 13, 16 | jaod 380 | . . 3 |
18 | 3, 17 | sylbid 215 | . 2 |
19 | 18 | 3imp 1190 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 class class class wbr 4452
cr 9512 0 cc0 9513 clt 9649 cle 9650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-i2m1 9581 ax-1ne0 9582 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 |
Copyright terms: Public domain | W3C validator |