![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ss2iun | Unicode version |
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ss2iun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3497 | . . . . 5 | |
2 | 1 | ralimi 2850 | . . . 4 |
3 | rexim 2922 | . . . 4 | |
4 | 2, 3 | syl 16 | . . 3 |
5 | eliun 4335 | . . 3 | |
6 | eliun 4335 | . . 3 | |
7 | 4, 5, 6 | 3imtr4g 270 | . 2 |
8 | 7 | ssrdv 3509 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
A. wral 2807 E. wrex 2808 C_ wss 3475
U_ ciun 4330 |
This theorem is referenced by: iuneq2 4347 oawordri 7218 omwordri 7240 oewordri 7260 oeworde 7261 r1val1 8225 cfslb2n 8669 imasaddvallem 14926 dprdss 17076 tgcmp 19901 txcmplem1 20142 txcmplem2 20143 xkococnlem 20160 alexsubALT 20551 ptcmplem3 20554 metnrmlem2 21364 uniiccvol 21989 dvfval 22301 filnetlem3 30198 sstotbnd2 30270 equivtotbnd 30274 bnj1145 34049 bnj1136 34053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-ss 3489 df-iun 4332 |
Copyright terms: Public domain | W3C validator |