MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2rabi Unicode version

Theorem ss2rabi 3581
Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
ss2rabi.1
Assertion
Ref Expression
ss2rabi

Proof of Theorem ss2rabi
StepHypRef Expression
1 ss2rab 3575 . 2
2 ss2rabi.1 . 2
31, 2mprgbir 2821 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  e.wcel 1818  {crab 2811  C_wss 3475
This theorem is referenced by:  supub  7939  suplub  7940  card2on  8001  rankval4  8306  fin1a2lem12  8812  catlid  15080  catrid  15081  gsumval2  15907  lbsextlem3  17806  psrbagsn  18160  musum  23467  ppiub  23479  usisuslgra  24365  disjxwwlks  24736  clwlknclwlkdifnum  24961  bj-unrab  34494  lclkrs2  37267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-in 3482  df-ss 3489
  Copyright terms: Public domain W3C validator