![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ssdifin0 | Unicode version |
Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
ssdifin0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 3722 | . 2 | |
2 | incom 3690 | . . 3 | |
3 | disjdif 3900 | . . 3 | |
4 | 2, 3 | eqtri 2486 | . 2 |
5 | sseq0 3817 | . 2 | |
6 | 1, 4, 5 | sylancl 662 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
\ cdif 3472 i^i cin 3474 C_ wss 3475
c0 3784 |
This theorem is referenced by: ssdifeq0 3910 marypha1lem 7913 numacn 8451 mreexexlem2d 15042 mreexexlem4d 15044 nrmsep2 19857 isnrm3 19860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |