![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ssdifssd | Unicode version |
Description: If is contained in , then is also contained in . Deduction form of ssdifss 3634. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 |
Ref | Expression |
---|---|
ssdifssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 | |
2 | ssdifss 3634 | . 2 | |
3 | 1, 2 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \ cdif 3472
C_ wss 3475 |
This theorem is referenced by: unblem1 7792 fin23lem26 8726 fin23lem29 8742 isf32lem8 8761 mrieqvlemd 15026 mrieqv2d 15036 mrissmrid 15038 mreexmrid 15040 mreexexlem2d 15042 mreexexlem4d 15044 acsfiindd 15807 ablfac1eulem 17123 lbspss 17728 lspsolv 17789 lsppratlem3 17795 lsppratlem4 17796 lspprat 17799 islbs2 17800 islbs3 17801 lbsextlem2 17805 lbsextlem3 17806 lbsextlem4 17807 lpss3 19645 islp3 19647 neitr 19681 restlp 19684 lpcls 19865 qtoprest 20218 ufinffr 20430 cldsubg 20609 xrge0gsumle 21338 bcthlem5 21767 rrxmval 21832 cmmbl 21945 nulmbl2 21947 shftmbl 21949 iundisj2 21959 uniiccdif 21987 uniiccmbl 21999 itg1val2 22091 itg1cl 22092 itg1ge0 22093 i1fadd 22102 itg1addlem5 22107 i1fmulc 22110 itg1mulc 22111 itg10a 22117 itg1ge0a 22118 itg1climres 22121 mbfi1fseqlem4 22125 itgss3 22221 limcdif 22280 limcnlp 22282 limcmpt2 22288 perfdvf 22307 dvcnp2 22323 dvaddbr 22341 dvmulbr 22342 dvferm1 22386 dvferm2 22388 ftc1lem6 22442 ig1peu 22572 ig1pdvds 22577 taylthlem1 22768 taylthlem2 22769 ulmdvlem3 22797 rlimcnp 23295 wilthlem2 23343 iundisj2f 27449 ofpreima2 27508 iundisj2fi 27602 eulerpartlemgs2 28319 ballotlemfrc 28465 cvmscld 28718 ftc1cnnc 30089 cntzsdrg 31151 limcrecl 31635 fperdvper 31715 stoweidlem57 31839 dirkercncflem3 31887 fourierdlem42 31931 fourierdlem46 31935 fourierdlem62 31951 c0rnghm 32719 lincdifsn 33025 lindslinindsimp1 33058 lincresunit3lem2 33081 lsatfixedN 34734 dochsnkr 37199 hdmaprnlem4tN 37582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |