![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sseq0 | Unicode version |
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
sseq0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3525 | . . 3 | |
2 | ss0 3816 | . . 3 | |
3 | 1, 2 | syl6bi 228 | . 2 |
4 | 3 | impcom 430 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 C_ wss 3475 c0 3784 |
This theorem is referenced by: ssn0 3818 ssdifin0 3909 disjxiun 4449 undom 7625 fieq0 7901 infdifsn 8094 cantnff 8114 tc00 8200 hashun3 12452 strlemor1 14724 strleun 14727 xpsc0 14957 xpsc1 14958 dmdprdsplit2lem 17094 2idlval 17881 opsrle 18140 pf1rcl 18385 ocvval 18698 pjfval 18737 en2top 19487 nrmsep 19858 isnrm3 19860 regsep2 19877 xkohaus 20154 kqdisj 20233 regr1lem 20240 alexsublem 20544 reconnlem1 21331 metdstri 21355 iundisj2 21959 clwlk0 24762 disjxpin 27447 iundisj2f 27449 iundisj2fi 27602 cvmsss2 28719 cldbnd 30144 cntotbnd 30292 mapfzcons1 30649 onfrALTlem2 33318 onfrALTlem2VD 33689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |