MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12 Unicode version

Theorem sseq12 3526
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3524 . 2
2 sseq2 3525 . 2
31, 2sylan9bb 699 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  C_wss 3475
This theorem is referenced by:  sseq12i  3529  sorpsscmpl  6591  funcnvuni  6753  fun11iun  6760  sornom  8678  axdc3lem2  8852  ipole  15788  ipodrsima  15795  cmetss  21753  funpsstri  29195  ismrcd2  30631  ismrc  30633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-in 3482  df-ss 3489
  Copyright terms: Public domain W3C validator