![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ssfin4 | Unicode version |
Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ssfin4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 753 | . . . 4 | |
2 | pssss 3598 | . . . . . . . . 9 | |
3 | simpr 461 | . . . . . . . . 9 | |
4 | 2, 3 | sylan9ssr 3517 | . . . . . . . 8 |
5 | difssd 3631 | . . . . . . . 8 | |
6 | 4, 5 | unssd 3679 | . . . . . . 7 |
7 | pssnel 3893 | . . . . . . . . 9 | |
8 | 7 | adantl 466 | . . . . . . . 8 |
9 | simpllr 760 | . . . . . . . . . . 11 | |
10 | simprl 756 | . . . . . . . . . . 11 | |
11 | 9, 10 | sseldd 3504 | . . . . . . . . . 10 |
12 | simprr 757 | . . . . . . . . . . 11 | |
13 | elndif 3627 | . . . . . . . . . . . 12 | |
14 | 13 | ad2antrl 727 | . . . . . . . . . . 11 |
15 | ioran 490 | . . . . . . . . . . . 12 | |
16 | elun 3644 | . . . . . . . . . . . 12 | |
17 | 15, 16 | xchnxbir 309 | . . . . . . . . . . 11 |
18 | 12, 14, 17 | sylanbrc 664 | . . . . . . . . . 10 |
19 | nelneq2 2575 | . . . . . . . . . 10 | |
20 | 11, 18, 19 | syl2anc 661 | . . . . . . . . 9 |
21 | eqcom 2466 | . . . . . . . . 9 | |
22 | 20, 21 | sylnib 304 | . . . . . . . 8 |
23 | 8, 22 | exlimddv 1726 | . . . . . . 7 |
24 | dfpss2 3588 | . . . . . . 7 | |
25 | 6, 23, 24 | sylanbrc 664 | . . . . . 6 |
26 | 25 | adantrr 716 | . . . . 5 |
27 | simprr 757 | . . . . . . 7 | |
28 | difexg 4600 | . . . . . . . 8 | |
29 | enrefg 7567 | . . . . . . . 8 | |
30 | 1, 28, 29 | 3syl 20 | . . . . . . 7 |
31 | 2 | ad2antrl 727 | . . . . . . . . . 10 |
32 | ssinss1 3725 | . . . . . . . . . 10 | |
33 | 31, 32 | syl 16 | . . . . . . . . 9 |
34 | inssdif0 3895 | . . . . . . . . 9 | |
35 | 33, 34 | sylib 196 | . . . . . . . 8 |
36 | disjdif 3900 | . . . . . . . 8 | |
37 | 35, 36 | jctir 538 | . . . . . . 7 |
38 | unen 7618 | . . . . . . 7 | |
39 | 27, 30, 37, 38 | syl21anc 1227 | . . . . . 6 |
40 | simplr 755 | . . . . . . 7 | |
41 | undif 3908 | . . . . . . 7 | |
42 | 40, 41 | sylib 196 | . . . . . 6 |
43 | 39, 42 | breqtrd 4476 | . . . . 5 |
44 | fin4i 8699 | . . . . 5 | |
45 | 26, 43, 44 | syl2anc 661 | . . . 4 |
46 | 1, 45 | pm2.65da 576 | . . 3 |
47 | 46 | nexdv 1884 | . 2 |
48 | ssexg 4598 | . . . 4 | |
49 | 48 | ancoms 453 | . . 3 |
50 | isfin4 8698 | . . 3 | |
51 | 49, 50 | syl 16 | . 2 |
52 | 47, 51 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 C. wpss 3476 c0 3784 class class class wbr 4452
cen 7533 cfin4 8681 |
This theorem is referenced by: domfin4 8712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-en 7537 df-fin4 8688 |
Copyright terms: Public domain | W3C validator |