![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ssin | Unicode version |
Description: Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3686 | . . . . 5 | |
2 | 1 | imbi2i 312 | . . . 4 |
3 | 2 | albii 1640 | . . 3 |
4 | jcab 863 | . . . 4 | |
5 | 4 | albii 1640 | . . 3 |
6 | 19.26 1680 | . . 3 | |
7 | 3, 5, 6 | 3bitrri 272 | . 2 |
8 | dfss2 3492 | . . 3 | |
9 | dfss2 3492 | . . 3 | |
10 | 8, 9 | anbi12i 697 | . 2 |
11 | dfss2 3492 | . 2 | |
12 | 7, 10, 11 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 e. wcel 1818
i^i cin 3474 C_ wss 3475 |
This theorem is referenced by: ssini 3720 ssind 3721 uneqin 3748 disjpss 3877 trin 4555 pwin 4789 fin 5770 epfrs 8183 tcmin 8193 resscntz 16369 subgdmdprd 17081 tgval 19456 eltg3i 19462 innei 19626 cnprest2 19791 subislly 19982 lly1stc 19997 xkohaus 20154 xkoinjcn 20188 opnfbas 20343 supfil 20396 rnelfm 20454 tsmsresOLD 20645 tsmsres 20646 restmetu 21090 chabs2 26435 cmbr4i 26519 pjin3i 27113 mdbr2 27215 dmdbr2 27222 dmdbr5 27227 mdslle1i 27236 mdslle2i 27237 mdslj1i 27238 mdslj2i 27239 mdsl2i 27241 mdslmd1lem1 27244 mdslmd1lem2 27245 mdslmd1i 27248 mdslmd3i 27251 hatomistici 27281 chrelat2i 27284 cvexchlem 27287 mdsymlem1 27322 mdsymlem3 27324 mdsymlem6 27327 dmdbr5ati 27341 pnfneige0 27933 ballotlem2 28427 iccllyscon 28695 wfrlem4 29346 frrlem4 29390 heibor1lem 30305 dochexmidlem1 37187 superficl 37752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |