MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssindif0 Unicode version

Theorem ssindif0 3880
Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0

Proof of Theorem ssindif0
StepHypRef Expression
1 disj2 3874 . 2
2 ddif 3635 . . 3
32sseq2i 3528 . 2
41, 3bitr2i 250 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  =wceq 1395   cvv 3109  \cdif 3472  i^icin 3474  C_wss 3475   c0 3784
This theorem is referenced by:  setind  8186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785
  Copyright terms: Public domain W3C validator