![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ssintab | Unicode version |
Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
ssintab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4302 | . 2 | |
2 | sseq2 3525 | . . 3 | |
3 | 2 | ralab2 3264 | . 2 |
4 | 1, 3 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 { cab 2442 A. wral 2807
C_ wss 3475 |^| cint 4286 |
This theorem is referenced by: ssmin 4305 ssintrab 4310 intmin4 4316 dffi2 7903 rankval3b 8265 sstskm 9241 dfuzi 10978 cycsubg 16229 ssmclslem 28925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-in 3482 df-ss 3489 df-int 4287 |
Copyright terms: Public domain | W3C validator |