![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ssnelpssd | Unicode version |
Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 3890. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssnelpssd.1 | |
ssnelpssd.2 | |
ssnelpssd.3 |
Ref | Expression |
---|---|
ssnelpssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnelpssd.2 | . 2 | |
2 | ssnelpssd.3 | . 2 | |
3 | ssnelpssd.1 | . . 3 | |
4 | ssnelpss 3890 | . . 3 | |
5 | 3, 4 | syl 16 | . 2 |
6 | 1, 2, 5 | mp2and 679 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 e. wcel 1818 C_ wss 3475
C. wpss 3476 |
This theorem is referenced by: isfin4-3 8716 canth4 9046 mrieqv2d 15036 symggen 16495 pgpfac1lem1 17125 pgpfaclem2 17133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 df-ne 2654 df-pss 3491 |
Copyright terms: Public domain | W3C validator |