MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonprc Unicode version

Theorem ssonprc 6627
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
ssonprc

Proof of Theorem ssonprc
StepHypRef Expression
1 df-nel 2655 . 2
2 ssorduni 6621 . . . . . . . 8
3 ordeleqon 6624 . . . . . . . 8
42, 3sylib 196 . . . . . . 7
54orcomd 388 . . . . . 6
65ord 377 . . . . 5
7 elex 3118 . . . . . 6
8 uniexb 6610 . . . . . 6
97, 8sylibr 212 . . . . 5
106, 9syl6 33 . . . 4
1110con1d 124 . . 3
12 onprc 6620 . . . 4
13 uniexg 6597 . . . . 5
14 eleq1 2529 . . . . 5
1513, 14syl5ib 219 . . . 4
1612, 15mtoi 178 . . 3
1711, 16impbid1 203 . 2
181, 17syl5bb 257 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  =wceq 1395  e.wcel 1818  e/wnel 2653   cvv 3109  C_wss 3475  U.cuni 4249  Ordword 4882   con0 4883
This theorem is referenced by:  inaprc  9235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-eprel 4796  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887
  Copyright terms: Public domain W3C validator