MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2b Unicode version

Theorem ssopab2b 4779
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
ssopab2b

Proof of Theorem ssopab2b
StepHypRef Expression
1 nfopab1 4518 . . . 4
2 nfopab1 4518 . . . 4
31, 2nfss 3496 . . 3
4 nfopab2 4519 . . . . 5
5 nfopab2 4519 . . . . 5
64, 5nfss 3496 . . . 4
7 ssel 3497 . . . . 5
8 opabid 4759 . . . . 5
9 opabid 4759 . . . . 5
107, 8, 93imtr3g 269 . . . 4
116, 10alrimi 1877 . . 3
123, 11alrimi 1877 . 2
13 ssopab2 4778 . 2
1412, 13impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  e.wcel 1818  C_wss 3475  <.cop 4035  {copab 4509
This theorem is referenced by:  eqopab2b  4782  dffun2  5603  marypha2lem3  7917  cvmlift2lem12  28759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-opab 4511
  Copyright terms: Public domain W3C validator