![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ssoprab2b | Unicode version |
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4779. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
ssoprab2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfoprab1 6346 | . . . 4 | |
2 | nfoprab1 6346 | . . . 4 | |
3 | 1, 2 | nfss 3496 | . . 3 |
4 | nfoprab2 6347 | . . . . 5 | |
5 | nfoprab2 6347 | . . . . 5 | |
6 | 4, 5 | nfss 3496 | . . . 4 |
7 | nfoprab3 6348 | . . . . . 6 | |
8 | nfoprab3 6348 | . . . . . 6 | |
9 | 7, 8 | nfss 3496 | . . . . 5 |
10 | ssel 3497 | . . . . . 6 | |
11 | oprabid 6323 | . . . . . 6 | |
12 | oprabid 6323 | . . . . . 6 | |
13 | 10, 11, 12 | 3imtr3g 269 | . . . . 5 |
14 | 9, 13 | alrimi 1877 | . . . 4 |
15 | 6, 14 | alrimi 1877 | . . 3 |
16 | 3, 15 | alrimi 1877 | . 2 |
17 | ssoprab2 6353 | . 2 | |
18 | 16, 17 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 e. wcel 1818 C_ wss 3475
<. cop 4035 { coprab 6297 |
This theorem is referenced by: eqoprab2b 6355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-oprab 6300 |
Copyright terms: Public domain | W3C validator |