MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Unicode version

Theorem sspss 3602
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 3588 . . . . 5
21simplbi2 625 . . . 4
32con1d 124 . . 3
43orrd 378 . 2
5 pssss 3598 . . 3
6 eqimss 3555 . . 3
75, 6jaoi 379 . 2
84, 7impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  \/wo 368  =wceq 1395  C_wss 3475  C.wpss 3476
This theorem is referenced by:  sspsstri  3605  sspsstr  3608  psssstr  3609  ordsseleq  4912  sorpssuni  6589  sorpssint  6590  ssnnfi  7759  ackbij1b  8640  fin23lem40  8752  zorng  8905  psslinpr  9430  suplem2pr  9452  mrissmrcd  15037  pgpssslw  16634  pgpfac1lem5  17130  idnghm  21250  dfon2lem4  29218  finminlem  30136  ressval3d  32558  lkrss2N  34894  dvh3dim3N  37176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-ne 2654  df-in 3482  df-ss 3489  df-pss 3491
  Copyright terms: Public domain W3C validator