![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sspsstri | Unicode version |
Description: Two ways of stating trichotomy with respect to inclusion. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
sspsstri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | or32 527 | . 2 | |
2 | sspss 3602 | . . . 4 | |
3 | sspss 3602 | . . . . 5 | |
4 | eqcom 2466 | . . . . . 6 | |
5 | 4 | orbi2i 519 | . . . . 5 |
6 | 3, 5 | bitri 249 | . . . 4 |
7 | 2, 6 | orbi12i 521 | . . 3 |
8 | orordir 531 | . . 3 | |
9 | 7, 8 | bitr4i 252 | . 2 |
10 | df-3or 974 | . 2 | |
11 | 1, 9, 10 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368
\/ w3o 972 = wceq 1395 C_ wss 3475
C. wpss 3476 |
This theorem is referenced by: ordtri3or 4915 sorpss 6585 sorpssi 6586 funpsstri 29195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-ne 2654 df-in 3482 df-ss 3489 df-pss 3491 |
Copyright terms: Public domain | W3C validator |