MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabdv Unicode version

Theorem ssrabdv 3578
Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 31-Aug-2006.)
Hypotheses
Ref Expression
ssrabdv.1
ssrabdv.2
Assertion
Ref Expression
ssrabdv
Distinct variable groups:   ,   ,   ,

Proof of Theorem ssrabdv
StepHypRef Expression
1 ssrabdv.1 . 2
2 ssrabdv.2 . . 3
32ralrimiva 2871 . 2
4 ssrab 3577 . 2
51, 3, 4sylanbrc 664 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  e.wcel 1818  A.wral 2807  {crab 2811  C_wss 3475
This theorem is referenced by:  mrcmndind  15997  symggen  16495  ablfac1eu  17124  lspsolvlem  17788  prdsxmslem2  21032  ovolicc2lem4  21931  abelth2  22837  perfectlem2  23505  cvmlift2lem11  28758  idomsubgmo  31155  usgresvm1  32443  usgresvm1ALT  32447  bj-rabtrAUTO  34499  mapdrvallem3  37373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-in 3482  df-ss 3489
  Copyright terms: Public domain W3C validator