MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstp Unicode version

Theorem sstp 4194
Description: The subsets of a triple. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
sstp

Proof of Theorem sstp
StepHypRef Expression
1 df-tp 4034 . . 3
21sseq2i 3528 . 2
3 0ss 3814 . . 3
43biantrur 506 . 2
5 ssunsn2 4189 . . 3
63biantrur 506 . . . . 5
7 sspr 4193 . . . . 5
86, 7bitr3i 251 . . . 4
9 uncom 3647 . . . . . . . 8
10 un0 3810 . . . . . . . 8
119, 10eqtri 2486 . . . . . . 7
1211sseq1i 3527 . . . . . 6
13 uncom 3647 . . . . . . 7
1413sseq2i 3528 . . . . . 6
1512, 14anbi12i 697 . . . . 5
16 ssunpr 4192 . . . . 5
17 uncom 3647 . . . . . . . . 9
18 df-pr 4032 . . . . . . . . 9
1917, 18eqtr4i 2489 . . . . . . . 8
2019eqeq2i 2475 . . . . . . 7
2120orbi2i 519 . . . . . 6
22 uncom 3647 . . . . . . . . 9
23 df-pr 4032 . . . . . . . . 9
2422, 23eqtr4i 2489 . . . . . . . 8
2524eqeq2i 2475 . . . . . . 7
261, 13eqtr2i 2487 . . . . . . . 8
2726eqeq2i 2475 . . . . . . 7
2825, 27orbi12i 521 . . . . . 6
2921, 28orbi12i 521 . . . . 5
3015, 16, 293bitri 271 . . . 4
318, 30orbi12i 521 . . 3
325, 31bitri 249 . 2
332, 4, 323bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  \/wo 368  /\wa 369  =wceq 1395  u.cun 3473  C_wss 3475   c0 3784  {csn 4029  {cpr 4031  {ctp 4033
This theorem is referenced by:  pwtp  4246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-sn 4030  df-pr 4032  df-tp 4034
  Copyright terms: Public domain W3C validator