![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sstp | Unicode version |
Description: The subsets of a triple. (Contributed by Mario Carneiro, 2-Jul-2016.) |
Ref | Expression |
---|---|
sstp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4034 | . . 3 | |
2 | 1 | sseq2i 3528 | . 2 |
3 | 0ss 3814 | . . 3 | |
4 | 3 | biantrur 506 | . 2 |
5 | ssunsn2 4189 | . . 3 | |
6 | 3 | biantrur 506 | . . . . 5 |
7 | sspr 4193 | . . . . 5 | |
8 | 6, 7 | bitr3i 251 | . . . 4 |
9 | uncom 3647 | . . . . . . . 8 | |
10 | un0 3810 | . . . . . . . 8 | |
11 | 9, 10 | eqtri 2486 | . . . . . . 7 |
12 | 11 | sseq1i 3527 | . . . . . 6 |
13 | uncom 3647 | . . . . . . 7 | |
14 | 13 | sseq2i 3528 | . . . . . 6 |
15 | 12, 14 | anbi12i 697 | . . . . 5 |
16 | ssunpr 4192 | . . . . 5 | |
17 | uncom 3647 | . . . . . . . . 9 | |
18 | df-pr 4032 | . . . . . . . . 9 | |
19 | 17, 18 | eqtr4i 2489 | . . . . . . . 8 |
20 | 19 | eqeq2i 2475 | . . . . . . 7 |
21 | 20 | orbi2i 519 | . . . . . 6 |
22 | uncom 3647 | . . . . . . . . 9 | |
23 | df-pr 4032 | . . . . . . . . 9 | |
24 | 22, 23 | eqtr4i 2489 | . . . . . . . 8 |
25 | 24 | eqeq2i 2475 | . . . . . . 7 |
26 | 1, 13 | eqtr2i 2487 | . . . . . . . 8 |
27 | 26 | eqeq2i 2475 | . . . . . . 7 |
28 | 25, 27 | orbi12i 521 | . . . . . 6 |
29 | 21, 28 | orbi12i 521 | . . . . 5 |
30 | 15, 16, 29 | 3bitri 271 | . . . 4 |
31 | 8, 30 | orbi12i 521 | . . 3 |
32 | 5, 31 | bitri 249 | . 2 |
33 | 2, 4, 32 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368
/\ wa 369 = wceq 1395 u. cun 3473
C_ wss 3475 c0 3784 { csn 4029 { cpr 4031
{ ctp 4033 |
This theorem is referenced by: pwtp 4246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-pr 4032 df-tp 4034 |
Copyright terms: Public domain | W3C validator |