![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ssunpr | Unicode version |
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.) |
Ref | Expression |
---|---|
ssunpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4032 | . . . . . 6 | |
2 | 1 | uneq2i 3654 | . . . . 5 |
3 | unass 3660 | . . . . 5 | |
4 | 2, 3 | eqtr4i 2489 | . . . 4 |
5 | 4 | sseq2i 3528 | . . 3 |
6 | 5 | anbi2i 694 | . 2 |
7 | ssunsn2 4189 | . 2 | |
8 | ssunsn 4190 | . . 3 | |
9 | un23 3662 | . . . . . 6 | |
10 | 9 | sseq2i 3528 | . . . . 5 |
11 | 10 | anbi2i 694 | . . . 4 |
12 | ssunsn 4190 | . . . 4 | |
13 | 4, 9 | eqtr2i 2487 | . . . . . 6 |
14 | 13 | eqeq2i 2475 | . . . . 5 |
15 | 14 | orbi2i 519 | . . . 4 |
16 | 11, 12, 15 | 3bitri 271 | . . 3 |
17 | 8, 16 | orbi12i 521 | . 2 |
18 | 6, 7, 17 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368
/\ wa 369 = wceq 1395 u. cun 3473
C_ wss 3475 { csn 4029 { cpr 4031 |
This theorem is referenced by: sspr 4193 sstp 4194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |