![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ssxr | Unicode version |
Description: The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
ssxr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4032 | . . . . . . 7 | |
2 | 1 | ineq2i 3696 | . . . . . 6 |
3 | indi 3743 | . . . . . 6 | |
4 | 2, 3 | eqtri 2486 | . . . . 5 |
5 | disjsn 4090 | . . . . . . . 8 | |
6 | disjsn 4090 | . . . . . . . 8 | |
7 | 5, 6 | anbi12i 697 | . . . . . . 7 |
8 | 7 | biimpri 206 | . . . . . 6 |
9 | pm4.56 495 | . . . . . 6 | |
10 | un00 3862 | . . . . . 6 | |
11 | 8, 9, 10 | 3imtr3i 265 | . . . . 5 |
12 | 4, 11 | syl5eq 2510 | . . . 4 |
13 | reldisj 3870 | . . . . 5 | |
14 | renfdisj 9668 | . . . . . . . 8 | |
15 | disj3 3871 | . . . . . . . 8 | |
16 | 14, 15 | mpbi 208 | . . . . . . 7 |
17 | difun2 3907 | . . . . . . 7 | |
18 | 16, 17 | eqtr4i 2489 | . . . . . 6 |
19 | 18 | sseq2i 3528 | . . . . 5 |
20 | 13, 19 | syl6bbr 263 | . . . 4 |
21 | 12, 20 | syl5ib 219 | . . 3 |
22 | 21 | orrd 378 | . 2 |
23 | df-xr 9653 | . . 3 | |
24 | 23 | sseq2i 3528 | . 2 |
25 | 3orrot 979 | . . 3 | |
26 | df-3or 974 | . . 3 | |
27 | 25, 26 | bitri 249 | . 2 |
28 | 22, 24, 27 | 3imtr4i 266 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 \/ w3o 972
= wceq 1395 e. wcel 1818 \ cdif 3472
u. cun 3473 i^i cin 3474 C_ wss 3475
c0 3784 { csn 4029 { cpr 4031
cr 9512 cpnf 9646 cmnf 9647
cxr 9648 |
This theorem is referenced by: xrsupss 11529 xrinfmss 11530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 |
Copyright terms: Public domain | W3C validator |