MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdpc6 Unicode version

Theorem stdpc6 1800
Description: One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1801.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.)
Assertion
Ref Expression
stdpc6

Proof of Theorem stdpc6
StepHypRef Expression
1 equid 1791 . 2
21ax-gen 1618 1
Colors of variables: wff setvar class
Syntax hints:  A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator