![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > stoic1a | Unicode version |
Description: Stoic logic Thema 1 (part
a).
The first thema of the four Stoic logic themata, in its basic form, was: "When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/ We will represent thema 1 as two very similar rules stoic1a 1605 and stoic1b 1606 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) |
Ref | Expression |
---|---|
stoic1.1 |
Ref | Expression |
---|---|
stoic1a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic1.1 | . . . . . 6 | |
2 | 1 | con3i 135 | . . . . 5 |
3 | ianor 488 | . . . . 5 | |
4 | 2, 3 | sylib 196 | . . . 4 |
5 | 4 | anim2i 569 | . . 3 |
6 | orcom 387 | . . . 4 | |
7 | andi 867 | . . . 4 | |
8 | pm3.24 882 | . . . . 5 | |
9 | 8 | biorfi 407 | . . . 4 |
10 | 6, 7, 9 | 3bitr4i 277 | . . 3 |
11 | 5, 10 | sylib 196 | . 2 |
12 | 11 | simprd 463 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 |
This theorem is referenced by: stoic1b 1606 posn 5073 frsn 5075 relimasn 5365 nssdmovg 6457 iblss 22211 midexlem 24069 xaddeq0 27573 xrge0npcan 27684 itg2addnclem2 30067 dvasin 30103 ssnel 31422 icccncfext 31690 dirkercncflem1 31885 fourierdlem81 31970 fourierdlem97 31986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 |
Copyright terms: Public domain | W3C validator |