MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcn2 Unicode version

Theorem subcn2 13417
Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
subcn2
Distinct variable groups:   , , , ,   , , , ,   , , , ,

Proof of Theorem subcn2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 negcl 9843 . . 3
2 addcn2 13416 . . 3
31, 2syl3an3 1263 . 2
4 negcl 9843 . . . . . . . . 9
5 oveq1 6303 . . . . . . . . . . . . . 14
65fveq2d 5875 . . . . . . . . . . . . 13
76breq1d 4462 . . . . . . . . . . . 12
87anbi2d 703 . . . . . . . . . . 11
9 oveq2 6304 . . . . . . . . . . . . . 14
109oveq1d 6311 . . . . . . . . . . . . 13
1110fveq2d 5875 . . . . . . . . . . . 12
1211breq1d 4462 . . . . . . . . . . 11
138, 12imbi12d 320 . . . . . . . . . 10
1413rspcv 3206 . . . . . . . . 9
154, 14syl 16 . . . . . . . 8
1615adantl 466 . . . . . . 7
17 simpr 461 . . . . . . . . . . . . 13
18 simpll3 1037 . . . . . . . . . . . . 13
1917, 18neg2subd 9971 . . . . . . . . . . . 12
2019fveq2d 5875 . . . . . . . . . . 11
2118, 17abssubd 13284 . . . . . . . . . . 11
2220, 21eqtrd 2498 . . . . . . . . . 10
2322breq1d 4462 . . . . . . . . 9
2423anbi2d 703 . . . . . . . 8
25 negsub 9890 . . . . . . . . . . . 12
2625adantll 713 . . . . . . . . . . 11
27 simpll2 1036 . . . . . . . . . . . 12
2827, 18negsubd 9960 . . . . . . . . . . 11
2926, 28oveq12d 6314 . . . . . . . . . 10
3029fveq2d 5875 . . . . . . . . 9
3130breq1d 4462 . . . . . . . 8
3224, 31imbi12d 320 . . . . . . 7
3316, 32sylibd 214 . . . . . 6
3433ralrimdva 2875 . . . . 5
3534ralimdva 2865 . . . 4
3635reximdv 2931 . . 3
3736reximdv 2931 . 2
383, 37mpd 15 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  /\w3a 973  =wceq 1395  e.wcel 1818  A.wral 2807  E.wrex 2808   class class class wbr 4452  `cfv 5593  (class class class)co 6296   cc 9511   caddc 9516   clt 9649   cmin 9828  -ucneg 9829   crp 11249   cabs 13067
This theorem is referenced by:  climsub  13456  rlimsub  13466  subcn  21370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590  ax-pre-sup 9591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-2nd 6801  df-recs 7061  df-rdg 7095  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-sup 7921  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-div 10232  df-nn 10562  df-2 10619  df-3 10620  df-n0 10821  df-z 10890  df-uz 11111  df-rp 11250  df-seq 12108  df-exp 12167  df-cj 12932  df-re 12933  df-im 12934  df-sqrt 13068  df-abs 13069
  Copyright terms: Public domain W3C validator