MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc0 Unicode version

Theorem suc0 4957
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4889 . 2
2 uncom 3647 . 2
3 un0 3810 . 2
41, 2, 33eqtri 2490 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  u.cun 3473   c0 3784  {csn 4029  succsuc 4885
This theorem is referenced by:  df1o2  7161  axdc3lem4  8854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-dif 3478  df-un 3480  df-nul 3785  df-suc 4889
  Copyright terms: Public domain W3C validator