![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suc11 | Unicode version |
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
suc11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4893 | . . . . 5 | |
2 | ordn2lp 4903 | . . . . . 6 | |
3 | ianor 488 | . . . . . 6 | |
4 | 2, 3 | sylib 196 | . . . . 5 |
5 | 1, 4 | syl 16 | . . . 4 |
6 | 5 | adantr 465 | . . 3 |
7 | eqimss 3555 | . . . . . 6 | |
8 | sucssel 4975 | . . . . . 6 | |
9 | 7, 8 | syl5 32 | . . . . 5 |
10 | elsuci 4949 | . . . . . . 7 | |
11 | 10 | ord 377 | . . . . . 6 |
12 | 11 | com12 31 | . . . . 5 |
13 | 9, 12 | syl9 71 | . . . 4 |
14 | eqimss2 3556 | . . . . . 6 | |
15 | sucssel 4975 | . . . . . 6 | |
16 | 14, 15 | syl5 32 | . . . . 5 |
17 | elsuci 4949 | . . . . . . . 8 | |
18 | 17 | ord 377 | . . . . . . 7 |
19 | 18 | com12 31 | . . . . . 6 |
20 | eqcom 2466 | . . . . . 6 | |
21 | 19, 20 | syl6ib 226 | . . . . 5 |
22 | 16, 21 | syl9 71 | . . . 4 |
23 | 13, 22 | jaao 509 | . . 3 |
24 | 6, 23 | mpd 15 | . 2 |
25 | suceq 4948 | . 2 | |
26 | 24, 25 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 C_ wss 3475
Ord word 4882
con0 4883 suc csuc 4885 |
This theorem is referenced by: peano4 6722 limenpsi 7712 fin1a2lem2 8802 sltval2 29416 sltsolem1 29428 onsuct0 29906 bnj168 33785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-suc 4889 |
Copyright terms: Public domain | W3C validator |