![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suc11reg | Unicode version |
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Regularity). Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
Ref | Expression |
---|---|
suc11reg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 8051 | . . . . 5 | |
2 | ianor 488 | . . . . 5 | |
3 | 1, 2 | mpbi 208 | . . . 4 |
4 | sucidg 4961 | . . . . . . . . . . 11 | |
5 | eleq2 2530 | . . . . . . . . . . 11 | |
6 | 4, 5 | syl5ibcom 220 | . . . . . . . . . 10 |
7 | elsucg 4950 | . . . . . . . . . 10 | |
8 | 6, 7 | sylibd 214 | . . . . . . . . 9 |
9 | 8 | imp 429 | . . . . . . . 8 |
10 | 9 | ord 377 | . . . . . . 7 |
11 | 10 | ex 434 | . . . . . 6 |
12 | 11 | com23 78 | . . . . 5 |
13 | sucidg 4961 | . . . . . . . . . . . 12 | |
14 | eleq2 2530 | . . . . . . . . . . . 12 | |
15 | 13, 14 | syl5ibrcom 222 | . . . . . . . . . . 11 |
16 | elsucg 4950 | . . . . . . . . . . 11 | |
17 | 15, 16 | sylibd 214 | . . . . . . . . . 10 |
18 | 17 | imp 429 | . . . . . . . . 9 |
19 | 18 | ord 377 | . . . . . . . 8 |
20 | eqcom 2466 | . . . . . . . 8 | |
21 | 19, 20 | syl6ib 226 | . . . . . . 7 |
22 | 21 | ex 434 | . . . . . 6 |
23 | 22 | com23 78 | . . . . 5 |
24 | 12, 23 | jaao 509 | . . . 4 |
25 | 3, 24 | mpi 17 | . . 3 |
26 | sucexb 6644 | . . . . 5 | |
27 | sucexb 6644 | . . . . . 6 | |
28 | 27 | notbii 296 | . . . . 5 |
29 | nelneq 2574 | . . . . 5 | |
30 | 26, 28, 29 | syl2anb 479 | . . . 4 |
31 | 30 | pm2.21d 106 | . . 3 |
32 | eqcom 2466 | . . . 4 | |
33 | 26 | notbii 296 | . . . . . . 7 |
34 | nelneq 2574 | . . . . . . 7 | |
35 | 27, 33, 34 | syl2anb 479 | . . . . . 6 |
36 | 35 | ancoms 453 | . . . . 5 |
37 | 36 | pm2.21d 106 | . . . 4 |
38 | 32, 37 | syl5bi 217 | . . 3 |
39 | sucprc 4958 | . . . . 5 | |
40 | sucprc 4958 | . . . . 5 | |
41 | 39, 40 | eqeqan12d 2480 | . . . 4 |
42 | 41 | biimpd 207 | . . 3 |
43 | 25, 31, 38, 42 | 4cases 949 | . 2 |
44 | suceq 4948 | . 2 | |
45 | 43, 44 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
suc csuc 4885 |
This theorem is referenced by: rankxpsuc 8321 bnj551 33799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-eprel 4796 df-fr 4843 df-suc 4889 |
Copyright terms: Public domain | W3C validator |