![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > summolem3 | Unicode version |
Description: Lemma for summo 13539. (Contributed by Mario Carneiro, 29-Mar-2014.) |
Ref | Expression |
---|---|
summo.1 | |
summo.2 | |
summo.3 | |
summolem3.4 | |
summolem3.5 | |
summolem3.6 | |
summolem3.7 |
Ref | Expression |
---|---|
summolem3 |
N
, ,, ,, ,M
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcl 9595 | . . . 4 | |
2 | 1 | adantl 466 | . . 3 |
3 | addcom 9787 | . . . 4 | |
4 | 3 | adantl 466 | . . 3 |
5 | addass 9600 | . . . 4 | |
6 | 5 | adantl 466 | . . 3 |
7 | summolem3.5 | . . . . 5 | |
8 | 7 | simpld 459 | . . . 4 |
9 | nnuz 11145 | . . . 4 | |
10 | 8, 9 | syl6eleq 2555 | . . 3 |
11 | ssid 3522 | . . . 4 | |
12 | 11 | a1i 11 | . . 3 |
13 | summolem3.6 | . . . . . 6 | |
14 | f1ocnv 5833 | . . . . . 6 | |
15 | 13, 14 | syl 16 | . . . . 5 |
16 | summolem3.7 | . . . . 5 | |
17 | f1oco 5843 | . . . . 5 | |
18 | 15, 16, 17 | syl2anc 661 | . . . 4 |
19 | ovex 6324 | . . . . . . . . . 10 | |
20 | 19 | f1oen 7556 | . . . . . . . . 9 |
21 | 18, 20 | syl 16 | . . . . . . . 8 |
22 | fzfi 12082 | . . . . . . . . 9 | |
23 | fzfi 12082 | . . . . . . . . 9 | |
24 | hashen 12420 | . . . . . . . . 9 | |
25 | 22, 23, 24 | mp2an 672 | . . . . . . . 8 |
26 | 21, 25 | sylibr 212 | . . . . . . 7 |
27 | 7 | simprd 463 | . . . . . . . 8 |
28 | nnnn0 10827 | . . . . . . . 8 | |
29 | hashfz1 12419 | . . . . . . . 8 | |
30 | 27, 28, 29 | 3syl 20 | . . . . . . 7 |
31 | nnnn0 10827 | . . . . . . . 8 | |
32 | hashfz1 12419 | . . . . . . . 8 | |
33 | 8, 31, 32 | 3syl 20 | . . . . . . 7 |
34 | 26, 30, 33 | 3eqtr3rd 2507 | . . . . . 6 |
35 | 34 | oveq2d 6312 | . . . . 5 |
36 | f1oeq2 5813 | . . . . 5 | |
37 | 35, 36 | syl 16 | . . . 4 |
38 | 18, 37 | mpbird 232 | . . 3 |
39 | elfznn 11743 | . . . . . 6 | |
40 | 39 | adantl 466 | . . . . 5 |
41 | f1of 5821 | . . . . . . . 8 | |
42 | 13, 41 | syl 16 | . . . . . . 7 |
43 | 42 | ffvelrnda 6031 | . . . . . 6 |
44 | summo.2 | . . . . . . . 8 | |
45 | 44 | ralrimiva 2871 | . . . . . . 7 |
46 | 45 | adantr 465 | . . . . . 6 |
47 | nfcsb1v 3450 | . . . . . . . 8 | |
48 | 47 | nfel1 2635 | . . . . . . 7 |
49 | csbeq1a 3443 | . . . . . . . 8 | |
50 | 49 | eleq1d 2526 | . . . . . . 7 |
51 | 48, 50 | rspc 3204 | . . . . . 6 |
52 | 43, 46, 51 | sylc 60 | . . . . 5 |
53 | fveq2 5871 | . . . . . . 7 | |
54 | 53 | csbeq1d 3441 | . . . . . 6 |
55 | summo.3 | . . . . . 6 | |
56 | 54, 55 | fvmptg 5954 | . . . . 5 |
57 | 40, 52, 56 | syl2anc 661 | . . . 4 |
58 | 57, 52 | eqeltrd 2545 | . . 3 |
59 | f1oeq2 5813 | . . . . . . . . . . . 12 | |
60 | 35, 59 | syl 16 | . . . . . . . . . . 11 |
61 | 16, 60 | mpbird 232 | . . . . . . . . . 10 |
62 | f1of 5821 | . . . . . . . . . 10 | |
63 | 61, 62 | syl 16 | . . . . . . . . 9 |
64 | fvco3 5950 | . . . . . . . . 9 | |
65 | 63, 64 | sylan 471 | . . . . . . . 8 |
66 | 65 | fveq2d 5875 | . . . . . . 7 |
67 | 13 | adantr 465 | . . . . . . . 8 |
68 | 63 | ffvelrnda 6031 | . . . . . . . 8 |
69 | f1ocnvfv2 6183 | . . . . . . . 8 | |
70 | 67, 68, 69 | syl2anc 661 | . . . . . . 7 |
71 | 66, 70 | eqtr2d 2499 | . . . . . 6 |
72 | 71 | csbeq1d 3441 | . . . . 5 |
73 | 72 | fveq2d 5875 | . . . 4 |
74 | elfznn 11743 | . . . . . 6 | |
75 | 74 | adantl 466 | . . . . 5 |
76 | fveq2 5871 | . . . . . . 7 | |
77 | 76 | csbeq1d 3441 | . . . . . 6 |
78 | summolem3.4 | . . . . . 6 | |
79 | 77, 78 | fvmpti 5955 | . . . . 5 |
80 | 75, 79 | syl 16 | . . . 4 |
81 | f1of 5821 | . . . . . . 7 | |
82 | 38, 81 | syl 16 | . . . . . 6 |
83 | 82 | ffvelrnda 6031 | . . . . 5 |
84 | elfznn 11743 | . . . . 5 | |
85 | fveq2 5871 | . . . . . . 7 | |
86 | 85 | csbeq1d 3441 | . . . . . 6 |
87 | 86, 55 | fvmpti 5955 | . . . . 5 |
88 | 83, 84, 87 | 3syl 20 | . . . 4 |
89 | 73, 80, 88 | 3eqtr4d 2508 | . . 3 |
90 | 2, 4, 6, 10, 12, 38, 58, 89 | seqf1o 12148 | . 2 |
91 | 34 | fveq2d 5875 | . 2 |
92 | 90, 91 | eqtr3d 2500 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 [_ csb 3434
C_ wss 3475 if cif 3941 class class class wbr 4452
e. cmpt 4510 cid 4795
`' ccnv 5003 o. ccom 5008 --> wf 5589
-1-1-onto-> wf1o 5592
` cfv 5593 (class class class)co 6296
cen 7533 cfn 7536 cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cn 10561 cn0 10820
cz 10889 cuz 11110
cfz 11701 seq cseq 12107 chash 12405 |
This theorem is referenced by: summolem2a 13537 summo 13539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 df-seq 12108 df-hash 12406 |
Copyright terms: Public domain | W3C validator |