![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sumsplit | Unicode version |
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
sumsplit.1 | |
sumsplit.2 | |
sumsplit.3 | |
sumsplit.4 | |
sumsplit.5 | |
sumsplit.6 | |
sumsplit.7 | |
sumsplit.8 | |
sumsplit.9 |
Ref | Expression |
---|---|
sumsplit |
M
, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumsplit.4 | . . 3 | |
2 | sumsplit.7 | . . . 4 | |
3 | 2 | ralrimiva 2871 | . . 3 |
4 | sumsplit.1 | . . . . . 6 | |
5 | 4 | eqimssi 3557 | . . . . 5 |
6 | 5 | a1i 11 | . . . 4 |
7 | 6 | orcd 392 | . . 3 |
8 | sumss2 13548 | . . 3 | |
9 | 1, 3, 7, 8 | syl21anc 1227 | . 2 |
10 | sumsplit.2 | . . . 4 | |
11 | sumsplit.5 | . . . 4 | |
12 | iftrue 3947 | . . . . . . . 8 | |
13 | 12 | adantl 466 | . . . . . . 7 |
14 | elun1 3670 | . . . . . . . 8 | |
15 | 14, 2 | sylan2 474 | . . . . . . 7 |
16 | 13, 15 | eqeltrd 2545 | . . . . . 6 |
17 | iffalse 3950 | . . . . . . . 8 | |
18 | 0cn 9609 | . . . . . . . 8 | |
19 | 17, 18 | syl6eqel 2553 | . . . . . . 7 |
20 | 19 | adantl 466 | . . . . . 6 |
21 | 16, 20 | pm2.61dan 791 | . . . . 5 |
22 | 21 | adantr 465 | . . . 4 |
23 | sumsplit.6 | . . . 4 | |
24 | iftrue 3947 | . . . . . . . 8 | |
25 | 24 | adantl 466 | . . . . . . 7 |
26 | elun2 3671 | . . . . . . . 8 | |
27 | 26, 2 | sylan2 474 | . . . . . . 7 |
28 | 25, 27 | eqeltrd 2545 | . . . . . 6 |
29 | iffalse 3950 | . . . . . . . 8 | |
30 | 29, 18 | syl6eqel 2553 | . . . . . . 7 |
31 | 30 | adantl 466 | . . . . . 6 |
32 | 28, 31 | pm2.61dan 791 | . . . . 5 |
33 | 32 | adantr 465 | . . . 4 |
34 | sumsplit.8 | . . . 4 | |
35 | sumsplit.9 | . . . 4 | |
36 | 4, 10, 11, 22, 23, 33, 34, 35 | isumadd 13582 | . . 3 |
37 | 15 | addid1d 9801 | . . . . . 6 |
38 | noel 3788 | . . . . . . . . . . 11 | |
39 | elin 3686 | . . . . . . . . . . . 12 | |
40 | sumsplit.3 | . . . . . . . . . . . . 13 | |
41 | 40 | eleq2d 2527 | . . . . . . . . . . . 12 |
42 | 39, 41 | syl5rbbr 260 | . . . . . . . . . . 11 |
43 | 38, 42 | mtbii 302 | . . . . . . . . . 10 |
44 | imnan 422 | . . . . . . . . . 10 | |
45 | 43, 44 | sylibr 212 | . . . . . . . . 9 |
46 | 45 | imp 429 | . . . . . . . 8 |
47 | 46, 29 | syl 16 | . . . . . . 7 |
48 | 13, 47 | oveq12d 6314 | . . . . . 6 |
49 | iftrue 3947 | . . . . . . . 8 | |
50 | 14, 49 | syl 16 | . . . . . . 7 |
51 | 50 | adantl 466 | . . . . . 6 |
52 | 37, 48, 51 | 3eqtr4rd 2509 | . . . . 5 |
53 | 32 | addid2d 9802 | . . . . . . 7 |
54 | 53 | adantr 465 | . . . . . 6 |
55 | 17 | adantl 466 | . . . . . . 7 |
56 | 55 | oveq1d 6311 | . . . . . 6 |
57 | biorf 405 | . . . . . . . . 9 | |
58 | elun 3644 | . . . . . . . . 9 | |
59 | 57, 58 | syl6rbbr 264 | . . . . . . . 8 |
60 | 59 | adantl 466 | . . . . . . 7 |
61 | 60 | ifbid 3963 | . . . . . 6 |
62 | 54, 56, 61 | 3eqtr4rd 2509 | . . . . 5 |
63 | 52, 62 | pm2.61dan 791 | . . . 4 |
64 | 63 | sumeq2sdv 13526 | . . 3 |
65 | 1 | unssad 3680 | . . . . 5 |
66 | 15 | ralrimiva 2871 | . . . . 5 |
67 | sumss2 13548 | . . . . 5 | |
68 | 65, 66, 7, 67 | syl21anc 1227 | . . . 4 |
69 | 1 | unssbd 3681 | . . . . 5 |
70 | 27 | ralrimiva 2871 | . . . . 5 |
71 | sumss2 13548 | . . . . 5 | |
72 | 69, 70, 7, 71 | syl21anc 1227 | . . . 4 |
73 | 68, 72 | oveq12d 6314 | . . 3 |
74 | 36, 64, 73 | 3eqtr4rd 2509 | . 2 |
75 | 9, 74 | eqtr4d 2501 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
u. cun 3473 i^i cin 3474 C_ wss 3475
c0 3784 if cif 3941 dom cdm 5004
` cfv 5593 (class class class)co 6296
cfn 7536 cc 9511 0 cc0 9513 caddc 9516 cz 10889 cuz 11110
seq cseq 12107
cli 13307 sum_ csu 13508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 |
Copyright terms: Public domain | W3C validator |